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1 Introduction and conclusions

The gravity/gauge duality has established itself as a new paradigm to study quantum

field theories in strongly interacting regimes. In the original examples of the duality,

one has a good understanding of the theories on the two sides of the duality, and the

approximations made are under control. However, none of these examples seems to be

realized in Nature. One of the realms of physical phenomena where strongly coupled field

theories ofter appear is that of condensed matter, and there has been plenty of work (some

of it reviewed in [1, 2]) trying to apply holographic ideas to condensed matter systems.

These works deal with gravity backgrounds that do not necessarily correspond to limits of

known M/string theory solutions, and its purpose is to present universal features that don’t

depend on details of a microscopic formulation of the holographic duality. Nevertheless, in

more recent work some of these models have been embedded in string/M-theory [3] which

makes possible a microscopic formulation of the holographic duality.

Among the possible applications of holographic techniques to condensed matter sys-

tems, quantum criticality has emerged as a potentially fruitful arena [4]. It refers to systems

that in some region of the phase diagram have dynamics determined by the proximity of a

quantum phase transition. The paucity of analytical tools to study these regions in phase

space has raised the hope that gravity/gauge duality might provide instructive toy models,

and more optimistically, perhaps even a precise dual for some real world system exhibiting

quantum criticality.

Along these lines, there has been work trying to model the T 6= 0 quantum critical

regime, by mapping it to an AdS background with a Reissner-Nordström black brane [5].

There has been also work trying to model thermal (i.e. T 6= 0) phase transitions involving

the quantum critical regime, by mapping them to the appearance of scalar [6–8] or vector [9]

hair in the dual black brane background. However, there has been much less work trying
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to use the gravity/gauge duality to model the quantum (T = 0) phase transition itself (see

however [10]). This is one of our main motivations to explore the existence of possible

extremal (i.e. T = 0) solutions to the gravity systems considered in the literature.

The kind of systems considered in these works consist of General Relativity with neg-

ative cosmological constant coupled to either a non-Abelian gauge field, or to an Abelian

gauge field and a minimally coupled charged scalar with an arbitrary potential. In the last

case, the resulting system of equations appears to be unsolvable in general, so much of the

insight into it comes from numerical analysis [6–8]. Numerical analysis is performed for

particular choices of parameters (e.g. the charge of the scalar field) or models (e.g. specific

choice of the scalar potential), and in some cases it is not conclusive, as in some limits the

numerical behavior of the potential solutions is unstable. For these reasons, it is useful

to complement these numerical analysis with analytic arguments. While finding analytic

regular solutions is hard (see however [11] for analytic solutions with hyperbolic horizons),

it is possible to present arguments about non-existence of these solutions in certain cases.

These no-hair theorems [12–14] provide then constraints on the phase diagram of the puta-

tive dual theory. Most no-hair theorems in the literature apply to spherical horizons, but

as we will see, they generalize immediately to flat horizons.

The main result of the present work is the proof of a couple of no-hair theorem for

black holes in the Abelian Higgs model, in arbitrary dimension and for arbitrary horizon

topology. These theorems help to elucidate the space of solutions of these models of

holographic superconductivity as one varies the parameters of the model.

In section 2 we introduce the theory we will considering, General Relativity (in d ≥ 4

dimensions) with cosmological constant coupled to an Abelian gauge field, a minimally

coupled charged scalar field and an arbitrary scalar potential. We show that a particu-

lar combination of Maxwell and Einstein equations can be integrated, and the resulting

relation is particularly simple for flat horizons, and for arbitrary horizons in four dimen-

sions. Since we are interested in discussing properties of possible solutions near the horizon,

we present our ansatz in coordinates manifestly adapted to the horizon, i.e. null Gaussian

coordinates [15], which render the discussion of regularity of the different fields quite trans-

parent. Null Gaussian coordinates have become particularly useful in discussing extremal

black holes and their possible near horizon geometries in a wide variety of contexts [16].

In section 3 we generalize known no-hair theorems for neutral condensates to the case

of flat horizons (black-branes). For flat horizons and the simplest potential V (ψ) = m2ψ2,

the theorem that we present here covers most of the mass range where no hairy black

branes are expected. There is, however, a range of masses for which no hairy black branes

are expected [8], but we don’t have an analytic argument ruling them out.

In section 4, we then turn to extremal (T = 0) hairy black holes. We first find

the possible near-horizon geometries compatible with our ansatz. We then show that in

asymptotically Anti de Sitter spaces, the near horizon solution of flat or spherical horizons

must have an AdS2 factor in the metric, and it has vanishing scalar field. This result in

turn implies that the effective mass of the scalar [6] at the horizon is bounded from below,

m2
eff(r+) > 4|Λ|

– 2 –
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In particular, this rules out the existence of hairy extremal black branes with m2 < 0 scalar

hair. As a consequence, the endpoint of the instability discovered in [8] is not an extremal

hairy black brane.

It is plausible that the bounds presented here can be improved by more elaborated ar-

guments. It would also be interesting to obtain analytic results delimiting the boundaries of

existence/non-existence of hairy non-extremal black branes for the case of charged scalars.

Note added. Since the appearance of the first version of this work, there have been a

couple of papers [17, 18] studying the T = 0 limit of holographic superconductors. As

these papers focus on solutions without finite area horizon, there is no direct overlap with

the present work.

2 The model and the ansatz

We consider General Relativity in d ≥ 4 dimensions with an arbitrary cosmological con-

stant, plus a U(1) gauge field and a minimally coupled charged scalar field with arbitrary

scalar potential.

L =
√−g

(

R− 2Λ − 1

4
FµνFµν − gµν(∂µψ − iqAµψ)(∂νψ

∗ + iqAνψ
∗) − V (|ψ|)

)

(2.1)

We require that V (|ψ|) is such that V (0) = 0. In the AdS/condensed matter literature,

the following type of ansatz is ususally considered

ds2 = −f(r)dt2 + g−1(r)dr2 + r2hij(x)dx
idxj i, j = 1, . . . , d− 2

Aµ(r)dxµ = φ(r)dt ψ = ψ(r) (2.2)

where hij is the metric of a d− 2 Einstein manifold Σ [19],

Rij(h) = (d− 3)khij(r)

with k = 1, 0,−1. Solutions with k = 0,−1 are known to have horizons only for Λ < 0; the

most relevant case for holographic applications to condensed matter is k = 0,Λ < 0.

An example of solutions are the RN-AdS black holes [20],1

f = g =
r2

L2
+ k − A

rd−3
+

B

r2(d−3)
(2.3)

φ(r) = φ∞ − ρ

rd−3
B =

1

2

d− 3

d− 2
ρ2

where we introduced the AdS radius L2 = −(d − 2)(d − 1)/2Λ. For solutions with non-

trivial ψ it will be no longer true that f = g. Let us define eχ = g/f , which keeps track

of the hairiness of the solution. Its equation of motion is given by a linear combination of

Einstein equations,
d− 2

2
χ′ + rψ′2 +

rq2φ2ψ2eχ

g2
= 0

1These are still solutions for Λ ≥ 0, but unless k = 1, they don’t correspond to black holes.
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We presented the ansatz with a choice of coordinates that, while conventional, is not the

most convenient one to discuss no-hair theorems, especially in the case of extremal black

holes. The reason is that a key ingredient in some no-hair theorems is the requirement

of regularity of curvature invariants at the horizon, which in turns dictates the allowed

behavior of various combinations of metric components and matter fields [13]. These

conditions are more transparent if from the onset we switch to coordinates in which the

metric is regular at the horizon, e.g. null Gaussian coordinates [15]. In the case at hand,

we apply the following change of coordinates

dv = dt +
dr

(fg)1/2
dr̃ =

(

f

g

)1/2

dr (2.4)

In these new coordinates the ansatz for the metric reads

ds2 = −f(r̃)dv2 + 2dvdr̃ + h(r̃)hij(x)dx
idxj

where h(r̃) = r2. Einstein equations take the form

d−2

4

f ′h′

h
+
d−2

2

fh′′

h
+

(d−5)(d−2)

8

fh′2

h2
− (d−3)(d−2)k

2h
+Λ =−1

4
φ′2−V

2
− q2φ2ψ2

2f
− 1

2
fψ′2

−d−2

2

h′′

h
+
d−2

4

(

h′

h

)2

=
q2φ2ψ2

f2
+ψ′2

d−3

2

f ′h′+fh′′

h
+
f ′′

2
+

(d−3)(d−6)

8

fh′2

h2
− (d−3)(d−4)

2h
k+Λ =

1

4
φ′2−V

2
+
q2φ2ψ2

2f
− 1

2
fψ′2

where the prime stands for r̃-derivative. Maxwell equation in the new coordinates is

φ′′ +
d− 2

2

h′

h
φ′ =

2q2φψ2

f

while the equation of motion for the scalar field reads

fψ′′ +

(

f ′ +
d− 2

2

h′

h
f

)

ψ′ +
q2φ2ψ

f
=

1

2

dV

dψ

In the equations above we have already made use that Maxwell equations require the phase

of the scalar field to be constant, and we take it to be real.

An important feature of this system of equations is that it admits a first integral. By

taking a linear combination of the ij minus the vr̃ components of Einstein equations, we

arrive at an equation that does not depend on the scalar potential V (ψ). If we further

plug Maxwell equation in the resulting expression, we arrive at an equation that does not

contain the scalar field,

(

f ′ − h′

h
f − φφ′

)′

+
d− 2

2

h′

h

(

f ′ − h′

h
f − φφ′

)

+
d− 3

h
k = 0

This equation can be easily integrated in two particular cases. First, when k = 0, it

integrates to
(

f ′ − h′

h
f − φφ′

)

h
d−2

2 = c (2.5)
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while for d = 4 it integrates to

(

f ′ − h′

h
f − φφ′

)

h+ kr̃ = c

For black hole solutions, the physical meaning of the constant c will be elucidated after we

discuss possible horizons.

2.1 Horizons

If the solution has f(r+) = 0 for some r = r+, there is a horizon. The change of coor-

dinates (2.4) defining r̃ determines it up to an integration constant. For solutions with

horizons, we fix this integration constant by demanding that r̃ = 0 at the outer horizon.

The horizon temperature is

T =
1

4π
f ′|r̃=0

We will restrict ourselves to solutions with non-zero area at the horizon; recalling that

h(r̃) = r2, this means that h(0) 6= 0. Furthermore, as argued for instance in [2], we require

that |Aµ|2 = φ2/f is finite at the horizon. It then follows that φ itself vanishes at the

horizon. On the other hand, the manifest regularity of the metric at the horizon implies

that the components of the stress energy tensor that appear in Einstein equations, and

linear combinations thereof, are bounded at the horizon. In particular φ′ must be regular

at the horizon. Combining these last two facts, we conclude that φφ′ vanishes at the

horizon. A particular implication of this result is that the constant c appearing in (2.5) is

proportional to the temperature of the horizon, so for extremal solutions, c = 0.2

3 A no-hair theorem for neutral scalars

Before we address the possibility of extremal hairy black-branes, we present a no-hair

theorem for another particular case, that of neutral (q = 0) scalar hair. Since the argument

relies on global properties of the putative solutions, and not just behavior near the horizon,

it turns out that the coordinates in which we presented the ansatz (2.2) are better suited

for this discussion.

In the context of holographic superconductors, it has been argued [8] that at low

enough T , for certain range of masses of the scalar field, a Reissner-Nordström black brane

develops an instability due to a neutral scalar field, and numerical evidence was presented

(for a particular value of the mass of the scalar) of the existence of black branes with

neutral scalar hair. In this section we present a straightforward generalization of known

no-hair theorems for neutral scalars [22] to arbitrary horizon topology and dimension.

If we set q = 0, the Maxwell equation can be readily integrated, yielding

φ′eχ/2 =
(d− 3)ρ

rd−2
(3.1)

2This equation, for d = 4 and k = 0 was derived independently in [21], where it was also noted that

c = 0 corresponds to extremal solutions.
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where we used the asymptotic behavior to fix an integration constant. We see that φ′ has

a definite sign (the sign of ρ). Since φ(r+) = 0 and φ′ has definite sign, it follows that

φ has the same definite sign outside the horizon, i.e. φφ′ > 0. Bringing this result into

equation (2.5) we conclude that in the case k = 0, f ′ > 0 outside the horizon.

We will now show that for Λ < 0, if V (ψ)|r=r+
≥ 0 it is not possible to have neutral

hair. First we present an extremely simple argument valid for flat horizons, k = 0, and

then we give a general argument valid for any k. The argument will be based on the

conservation of the stress-energy tensor, which in the original coordinates takes the form

0 = ∂rT
r
r +

f ′

2f

(

T r
r − T t

t

)

+
d− 2

r

(

T r
r − T i

i

)

and the observation that if the scalar field is neutral, the stress-energy tensor of the

scalar and vector fields are separately conserved. Consider the stress-energy tensor of

the scalar field,

T r
r (ψ) =

gψ′2

2
− V

2

at the horizon we have

T r
r (ψ)|r=r+

= −V
2

≤ 0

Furthermore

∂rT
r
r (ψ) = −

(

f ′

2f
+
d− 2

r

)

gψ′2 < 0

since we argued above that f ′ > 0 outside the horizon. But these results are incompatible

with the fact that near infinity

T r
r (ψ) ∼ λ(d− 1)

2L2

ψ2
0

r2λ
→ 0+

This concludes the argument that it is not possible to have neutral hair if V (ψ)r=r+
≥ 0.

For the simple potential V = m2ψ2 this implies that there are no hairy solutions form2 ≥ 0.

The argument (and numerical evidence for m2L2 = −2) in [8] suggests that in 4d there are

hairy solutions for m2L2 < −3/2. It would be interesting to extend the no-hair theorem

presented here to the range −3/2 ≤ m2L2 < 0.

For generic scalar potentials things can be more complicated. For instance, the analytic

solution found recently in [23] evades the theorem because V (ψ)|r=r+
< 0. This is possible

even for m2 > 0, because terms in V (ψ) with higher powers of ψ become important near

the horizon.

It is not much harder to extend the proof for arbitrary k. It is possible to present a

proof using T r
r (ψ), but it is perhaps cleaner to use e−χ/2T r

r (ψ) as in [24]. One has

eχ/2
(

e−χ/2T r
r (ψ)

)′

= −
[

−1

4
eχφ′2 − Λ +

(d− 2)(d − 3)k

2r2
+

(d− 2)(d − 1)g

2r2

]

r

d− 2
ψ′2

From the rr Einstein equation at the horizon, it follows that

−1

4
eχ+φ′2+ − Λ +

(d− 2)(d − 3)k

2r2+
+ T r

r (ψ+) ≥ 0

– 6 –
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Using this result and equation (3.1), it is immediate that for k = 0,−1,

eχ/2
(

e−χ/2T r
r (ψ)

)′

≤
[

T r
r (ψ+) − (d− 2)(d − 1)g

2r2

]

r

d− 2
ψ′2

while for k = 1

eχ/2
(

e−χ/2T r
r (ψ)

)′

≤
[

max (T r
r (ψ+),Λ) − (d− 2)(d − 1)g

2r2

]

r

d− 2
ψ′2

(in fact, this last formula applies always, since for k = 0,−1 it reduces to the previous one).

In all cases, with Λ ≤ 0, we see that if T r
r (ψ)|r=r+

≤ 0 it follows that
(

e−χ/2T r
r (ψ)

)′
< 0

but then it is impossible that T r
r (ψ) → 0 at infinity, so there is no such hairy solution. To

recapitulate, we have proven the following

Theorem. If Λ < 0, V (ψ) ≥ 0 and q = 0, the ansatz (2.2) does not have regular black

hole solutions with non-zero area.

4 A no-hair theorem for extremal black branes

In this section we consider the possible existence of extremal (i.e. T = 0) black hole

solutions for the Abelian Higgs model, within our ansatz. We first study possible near

horizon geometries, finding that they can be of the form AdS2 ×Σ or R
1,1 ×Σ, where Σ is

the d−2 Riemannian Einstein manifold that we introduced in our ansatz. We then go on to

consider possible full solutions, and argue that none of them has R
1,1×Σ as its near horizon.

We then focus on the k = 0, 1 cases, for which we argue that the scalar field ψ(r̃)

vanishes in the near horizon geometry. Finally, for these cases, we derive a bound on the

effective mass of the scalar field at the horizon. We conclude that for scalar fields with (m, q)

not satisfying this bound, regular extremal black holes with scalar hair are not possible.

4.1 Near horizon geometry

An important observation about solutions with extremal horizons is that they imply the

existence of another solution to the system of equations: the near horizon geometry [15].

This new solution is obtained by taking the scaling limit

r̃ → r̃ǫ v → v

ǫ
ǫ→ 0

Now let’s assume that we have a solution with an extremal horizon, and consider its near

horizon geometry. Define f(r̃) = r̃2F (r̃). Since f(r̃) ≥ 0 at or outside the outer horizon,

F (r̃) ≥ 0. The near horizon metric is

ds2NH = −r̃2F (0)dv2 + 2dvdr̃ + h(0)hijdx
idxj

Recall that F (0) ≥ 0, h(0) > 0. The near horizon geometries are of the form AdS2 × Σ

for F (0) > 0 and R
1,1 × Σ, for F (0) = 0. As for the matter fields, since the Maxwell field

strength is an antisymmetric 2-form, in the scaling limit it is reduced to a constant electric

field. Finally, the scalar field, being a 0-form, is constant in the near horizon geometry.

– 7 –
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This can be also deduced from the equation of motion, since the near horizon geometry

plus matter fields must solve them. To start with, the near horizon geometry must be a

solution of Einstein equations. This implies

− (d− 3)(d − 2)k

2h(0)
+ Λ = −1

4
φ′2 − V

2
− q2φ2ψ2

2r̃2F (0)
− 1

2
r̃2F (0)ψ′2

0 =
q2φ2ψ2

r̃4F (0)2
+ ψ′2

F (0) − (d− 3)(d − 4)k

2h(0)
+ Λ =

1

4
φ′2 − V

2
+

q2φ2ψ2

2r̃2F (0)
− 1

2
r̃2F (0)ψ′2

Looking at the second equation, the vanishing of Gr̃r̃(r̃) in the near horizon geometry has

powerful implications, since it is equal to the sum of positive quantities, so each of them has

to vanish separately. It follows that for any value of d, k, the scalar field ψ is constant in

the near horizon geometry, and from its equation of motion in the near horizon geometry,

its value must be an extremum of the potential V (ψ). Also qφψ vanishes everywhere in

the near horizon geometry. For charged scalars, that means that either ψ(r̃) or φ(r̃) vanish

everywhere in the near horizon geometry. Maxwell equation in the near horizon geometry

does not add any new information.

We have then learned that both φ′(r̃) and ψ(r̃) are constant in the near horizon ge-

ometry,

1

2
φ′(r̃)2 = F (0) +

(d− 3)k

h(0)
(4.1)

V (ψ(r̃)) = −F (0) +
(d− 3)2

h(0)
k − 2Λ

and at least φ or ψ vanish everywhere for this solution. Let’s discuss these cases in turns.

Consider first the case φ = 0. If F (0) > 0, then k = −1. The only extremal black hole

that we are aware having this near horizon geometry is actually a vacuum solution, obtained

by setting A = − 2
d−1

(

d−3
d−1L

2
)(d−3)/2

, B = 0 in (2.3). We are not aware of any non-vacuum

extremal solution in the literature whose near horizon is given by this geometry: the family

of black holes with scalar hair of [11] admits a solution with an extremal horizon, but in

that case there is a curvature singularity at the horizon. Still in the φ = 0 case, if F (0) = 0,

then k = 0, and V (ψ) = −2Λ. For Λ < 0, recalling that in the near horizon geometry ψ(r̃)

takes a constant value given by an extremum of the potential, we can immediately rule

out the appearance of this near horizon geometry for some simple potentials. For instance,

if V (ψ) = m2ψ2, V vanishes at its only extremum, so this choice of potential doesn’t

allow for extremal black branes with this near horizon. Also, if V (ψ) = m2ψ2 + λψ4, the

potential doesn’t have an strictly positive extremum for m2 < 0, so again with this choice

of potential there are no black branes with this near horizon geometry.

On the other hand, if φ is not identically zero in the NH geometry, it follows that

ψ = 0. It is easy to see that for Λ < 0, it must be now that F (0) > 0, since if F (0) = 0,

then k = 1 and Λ > 0. One can easily check that the resulting solutions are the near

horizon geometries of the extremal Reissner-Nordström solutions (2.3).

– 8 –
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4.2 A global result

In the classification of possible near horizon geometries we found that they were of the form

AdS2×Σ or R
1,1×Σ, when F (0) > 0 or F (0) = 0 respectively. We would like to argue now

that only the first case can appear as the near horizon geometry of a full extremal black

hole solution. Assume that F (0) = 0. This can only happen when φ = k = 0 in the near

horizon geometry, so V (ψ) = −2Λ and in particular ψ 6= 0 in the near horizon geometry.

Now recall the first integral (2.5) for the k = 0 case. For extremal solutions c = 0, and the

expression is rather simple

f ′ − h′

h
f = φφ′

Using that h(r̃) is regular and non-zero at the horizon, we learn that in this case

φ2

f
→ 2

at the horizon. Requiring now that Tr̃r̃ is finite at the horizon, we deduce from this last

result that ψ vanishes at the horizon, in contradiction with V (ψ) = −2Λ. We then conclude

that all extremal black holes of the Abelian Higgs model have near horizon geometries of

the form AdS2 × Σ.

We are now ready to present the main result of this section. We have already seen that

all extremal black holes within our ansatz present a near horizon of the form AdS2 × Σ.

For k = 0, 1 this near horizon geometry supports a non-vanishing constant electric field

while the scalar field vanishes. For k = −1 we haven’t ruled out the possibility of a non-

vanishing value for the scalar fied in the near horizon, which would complicate the analysis.

Therefore, in what follows we focus on the k = 0, 1 cases.

When k = 0, 1 we just saw that the scalar field vanishes in the near horizon geometry.

This implies that in a potential full solution, the scalar field must vanish at the horizon.

More than that, since
φ2

2f
→ 1 +

(d− 3)k

F (0)h(0)

tends to a finite non-zero value, finiteness of Tr̃r̃ at the horizon requires then that ψ(r̃)

vanishes at least linearly at the horizon. Let’s now consider the equation of motion for the

scalar field in the full geometry. Every other field appearing in this equation has its leading

behavior near the horizon fixed by the near horizon geometry,

f(r̃) = r̃2F (0) + . . . , φ(r̃) = φ′(0)r̃ + . . . , h(r̃) = h(0) + . . .

Therefore, in a perturbative expansion near the horizon, the leading behavior of the

scalar field ψ(r̃) is given by solving its equation of motion in the near horizon geometry.

When we do so, we find two solutions, only one of them with a chance of vanishing at the

horizon

ψ(r̃) = ψ+r̃
α+ + ψ−r̃

α
− , α± =

−1 ±
√

1 +
4m2

eff

F (0)

2
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We argued that regularity of Tr̃r̃ demands that ψ(r̃) in the full solution vanishes at

least linearly in r̃ near the horizon. Imposing this requirement on the solution with α+,

yields the necessary condition

m2
eff(r+) = m2 − 2q2

(

1 +
(d− 3)k

F (0)h(0)

)

≥ 2F (0) =
2(d − 3)2

h(0)
k − 4Λ

or more succintly

m2
eff(r+) ≥ 4|Λ|

We have proven the following:

Theorem. If Λ < 0 and m2 − 2q2 < 4|Λ|, the ansatz (2.2) does not contain k = 0, 1

regular extremal black hole solutions with non-zero area and non-trivial scalar hair.

This bound rules out the existence of hairy extremal black branes with m2 ≤ 0. In [8]

it was found that an extremal RN black brane coupled to a scalar field with mass square

below the AdS2 BF bound develops an instability (see also [25]); no claims were made about

the endpoint of the instability. Our result implies that the endpoint of that instability is

not a hairy extremal black hole.

Although the bound presented here rules out the existence of regular extremal black

holes in the case of interest for holographic superconductors, it leaves open the possibility

of solutions above this bound. It would be interesting to completely rule out their existence

or alternatively, to find them explicitely.
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